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Relevance of the local-density approximation to interfacial
properties of ionic fluids within gradient theory

Volker C Weiss and Wolffram Schröer
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Germany
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Abstract. The effect of employing different approximations to the local density on properties of
inhomogeneous systems as obtained from a gradient expansion of the local free energy (gradient
theory) is investigated. We present liquid–vapour density profiles, surface tensions, correlation
lengths, and Ginzburg temperatures for an ionic model fluid, the restricted primitive model
(RPM), treated in the framework of Debye–Hückel theory. The dependence of the interfacial
properties, density profile and surface tension, on the type of local-density approximation is
comparatively weak (at most a factor of four in the surface tension). In contrast, the much more
sensitive Ginzburg temperature, which estimates the extent of the critical region, varies over a
range of four orders of magnitude depending on which local-density approximation is applied.

In this letter, we investigate the importance of the particular choice of local-density
approximation for several quantities of nonuniform fluids that can be obtained from a
gradient expansion of the local free energy, i.e. from gradient theory. In principle, the
calculation of these properties (density profiles, surface tension etc) calls for correlation
functions of the inhomogeneous system. Since these are unavailable in general, one usually
relies on the correlation functions for a corresponding uniform system and approximates the
density ρ̄, at which these correlation functions are to be evaluated, by various reasonable
expressions. Among the most commonly used approximations are [1] the ‘local average
density approximation’ (LADA), which assumes̄ρ = (ρ(r) + ρ(r′))/2, and the ‘density-
at-average-position approximation’ (DAPA),ρ̄ = ρ((r + r′)/2). Furthermore, one may try
to use the mean overall density of the system (MODA) [2] or the density at a Boltzmann-
averaged position (BAPA), where theansatzρ̄ = ρ(r + z(r′ − r)) [3] is made, andz is
subsequently averaged over using the free energy that the respectivez values produce in a
Boltzmann-weighting function. In the MODA approach, by adoptingρ̄ = N/V , whereN is
the number of particles in the whole system of volumeV , it is assumed that the correlation
functions are no longer functions of the absolute positionsr andr′, so any local character
of ρ̄ is neglected in the gradient expansion. For a simple Lennard-Jones fluid, McCoy and
Davis [4] conclude that the particular type of approximation hardly affects the numerical
results for fluid–fluid interfaces. There is, however, reason to believe that the situation is a
bit different when ionic fluids are considered. Many theoretical studies of ionic fluids have
been concerned with the restricted primitive model (RPM). This model fluid consists of
equisized hard spheres, half of which carry a charge of+q, the other half a charge of−q.
These ions of diameterσ are immersed in a dielectric continuum of dielectric constantε. In
our analyses of the Ginzburg temperature1T ∗Gi [2, 3] of the RPM, which are based on the
Debye–Ḧuckel theory and its extensions, we demonstrate that1T ∗Gi is extremely sensitive
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to the type of local-density approximation. Here, we shall investigate to what extent this
sensitivity propagates to surface tensions and density profiles. Recently, Grohet al [5] have
employed the LADA to evaluate liquid–vapour density profiles and the surface tension for
the RPM using the mean-spherical approximation (MSA) and density-functional theory, so
it may be of interest to assess the reliability of LADA.

In this study, we focus mainly on modified and extended versions of the van der Waals
gradient theory [1], so there will be no explicit appearance of the direct correlation function.
The only relevant correlation function is the pair distribution functiongik. Furthermore, we
are going to use the Debye–Hückel (DH) theory to account for the thermodynamic properties
and to provide an approximate model pair distribution function. The local free-energy
densityφ(r) = βA(r)σ 3/V is approximated by the free-energy density of a corresponding
homogeneous systemφhom(r) and the square-gradient termφ∇2(r)

φ(r) = φhom(r)+ φ∇2(r) (1)

φhom(r) = φ id
hom(r)+

σ 3

2

∑
i,k

ρi(r)ρk(r)

β∫
0

∫
uik(rik)gik(rik, β, ρ(r))drikdβ (2)

φ∇2(r) = −σ
3

12

∑
i,k

∇ρi(r)∇ρk(r)
β∫

0

∫
r2
ikuik(rik)

[
gik(rik, β, ρ(r))

+ a1ρ(r)
∂gik(rik, β, ρ(r))

∂ρ(r)
+ a2ρ(r)

2∂
2gik(rik, β, ρ(r))

∂ρ(r)2

]
drikdβ (3)

where φ id
hom stands for the ideal-gas part to be specified below. Within the RPM, the

interaction potentialuik for rik > σ is given by uik(rik) = qiqk/εrik, while the pair
distribution function corresponding to the DH theory is

gik = 1− β qiqk
εrik

exp[κ(σ − rik)]
(1+ κσ) (4)

whereκ is the inverse Debye length. Using these expressions the homogeneous part of the
reduced free-energy density within pure DH theory is obtained to be

φhom= ρ∗
[
ln
(

1
2ρ3

3
)− 1

]− (1/4π) [ln (1+ x)− x + 1
2x

2
]

(5)

where3 is the de Broglie thermal wavelength andρ∗ = ρσ 3 the reduced density;x = κσ
denotes the reduced inverse Debye length. A reduced temperature is introduced via
T ∗ = kBT εσ/q

2. The parametersa1 anda2 in (3) depend on the local-density approximation
made before expanding the free energy expression for the nonuniform system [3]. In MODA,
a1 anda2 are both zero, since no local variation ofgik with ρ is taken into account. For
LADA, we havea1 = 1, a2 = 1/4, while DAPA corresponds toa1 = 1/2, a2 = 0. In our
treatment of BAPA [3], averaging overz with equal weights yieldsa1 = 2/3, a2 = 0.

The results obtained using different local-density approximations will be compared to
predictions of an approach that employs an approximate hypernetted-chain (AHNC) relation
for the direct correlation functionCik

Cik = −βuik + 1
2h

2
ik (6)

used in conjunction withhik = gik−1 taken from DH theory to compute the square-gradient
term [3]. From the direct correlation functionCik, the square-gradient term can be calculated
after

φ∇2 = σ 3

12

∑
i,k

∫
r2
ikCik(rik)drik∇ρi(r)∇ρk(r). (7)
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Furthermore, we will present values for the generalized Debye–Hückel (GDH) theory
developed by Lee and Fisher [6]. In this approach, the direct correlation function is obtained
by means of functional differentiation from a DH equation generalized to be applicable to
nonuniform systems. Note that in the AHNC approach and in the GDH theory, no additional
assumption, such as a local-density approximation, is necessary as the square-gradient term
is calculated from a theory for the bulk fluid. In this respect, the latter two treatments differ
from the above approaches to calculate (approximately) the properties of an inhomogeneous
fluid, which rely on a specific form of the local density.

The pure DH theory is certainly not the most accurate theory for the RPM [7] and
we would like to emphasize that we do not attempt to obtain best estimates for density
profiles and surface tensions in this work, but rather study the role of the local-density
approximation. A numerical improvement of the results would certainly be obtainable by
employing the Fisher–Levin theory [7].

From evaluating (3) and usingc = 2φ∇2/(∇∗ρ∗)2, we obtain the following contributions
to the coefficient of the square-gradient termc. This coefficient is a sum of up to three
terms

c = c0+ a1c1+ a2c2 (8)

with

c0 = 1

12πρ∗2

[
ln (1+ x)+ x + 1

2
x2

]
(9)

c1 = − 1

24πρ∗2

2x + 4x2+ x3+ 4(1+ x) ln (1+ x)
1+ x (10)

c2 = 1

48πρ∗2

6x + 24x2+ 23x3+ 4x4+ 24(1+ x)2 ln (1+ x)
(1+ x)2 (11)

corresponding to the three terms in (3). Whilec0 stems from the term that contains no
derivative ofgik with respect to the density [2], to obtainc1 andc2, gik has been differentiated
with respect to density once and twice, respectively. Note that the givenc refers to an
expansion of the reduced free-energy densityφ = βAσ 3/V .

From the AHNC relation, the following expression for the coefficient of the square-
gradient term results:

cAHNC = π

12

1+ 2x + 2x2

x3T ∗2(1+ x)2 . (12)

Within GDH theory,c is given by [6]

cGDH = 1

96πρ∗2

[
ln

(
(1+ x)10

(1+ x + 1
3x

2)9

)
− x − 5x2− 8x3

2(1+ x)2
]
. (13)

We expect the BAPA and the AHNC relation to give results closest to those of GDH theory.
The reason for this expectation is based on the closely agreeing results forc2g (c at the
critical point) [3] and the expression for the correlation length in the low-density limit, for
which Lee and Fisher [6] predict the presumably exact resultξ = (b/9216πρ)1/4, where
b = σ/T ∗ is the Bjerrum length. Explicitly, the mean-field correlation length (in units of
σ ) can be obtained from

ξ =
[
c

(
∂2φhom

∂ρ∗2

)−1
]1/2

. (14)
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As shown in table 1, MODA, LADA, and DAPA predict considerably larger amplitudes ofξ

in the low-density limit, that is, larger than the Lee–Fisher result by a factor ofaξ =
√

32,√
14, and

√
8, respectively. The prefactor of

√
14 for LADA is also obtained from the

MSA [5]. While AHNC gives the correct result including the numerical prefactor, for the
‘equal-weight’ BAPA, the coefficient of this leading term vanishes identically [3] and a
higher-order term comes into play which causesξ to vanish asξ ∼ ρ1/4 in the low-density
limit. As we will see, this incorrect behaviour affects the symmetry of the density profile.

The critical parameters of the pure DH theory areρ∗c = 1/64π ≈ 0.005 and
T ∗c = 1/16 = 0.0625. Judged by recent estimates from Monte-Carlo simulations for
the RPM [8], which indicateρ∗c = 0.08 andT ∗c = 0.049, these DH values are not very
accurate, as mentioned above. In particular, the critical density is much too low. We will
calculate the density profiles and the surface tension forT ∗ = 0.05, i.e.T ∗/T ∗c = 0.8. The
bulk densities of the coexisting phases are roughlyρ∗l = 0.06 andρ∗v = 6.6× 10−5. We
employ the gradient theory treatment as outlined by Davis [1], that is, the density profile is
calculated according to

ρ∗∫
ρ∗0

(
T ∗c(ρ∗)
21ω(ρ∗)

)1/2

dρ∗ = −z/σ = −z∗ (15)

where ρ∗ denotesρ∗(z∗), ρ∗0 = (ρ∗l + ρ∗v )/2, and1ω(ρ∗) = ω(ρ∗) + P ∗bulk. P ∗bulk =
Pbulkεσ

4/q2 is the reduced bulk pressure and the quantityω(ρ∗) is defined asω(ρ∗) =
T ∗(φhom(ρ

∗) − ρ∗µ∗bulk). Here, µ∗bulk = βµbulk is the reduced bulk chemical potential.
Equation (15) is obtained from the Euler–Lagrange equation that minimizes the square-
gradient free-energy functional [9, 10]

I ({ρ∗}) =
+∞∫
−∞

[
1ω(ρ∗)+ 1

2
T ∗c(ρ∗)

(
∂ρ∗

∂z∗

)2
]

dz∗ (16)

where the two terms in the integrand measure the gain and loss, respectively, of free-energy
density that results from creating an interface of a certain thickness. The interplay of these
contributions determines the equilibrium density profile of the interface. This minimization
procedure is equivalent to imposing the condition that the chemical potential be constant
throughout the system [9]. In this theory, the dimensionless surface tension is obtained
from

γ ∗ = γ εσ 3/q2 =
ρ∗l∫
ρ∗v

√
2T ∗c(ρ∗)1ω(ρ∗)dρ∗. (17)

The density profiles are shown in figure 1, while the reduced surface tensionsγ̃ = γ ∗/T ∗ =
βγσ 2 following from the various local-density approximations are given in table 1 along
with the correlation lengths in the coexisting phases. From figure 1, it is obvious that those
theories which predict a larger correlation length also give rise to a broader interface. The
liquid–vapour interface extends over roughly four particle diameters for AHNC and up to
20 diameters for MODA; thus, the estimate of Grohet al [5] that the interface thickness is
about 4ξl is confirmed. Except for BAPA, the density profiles are rather symmetric. In the
BAPA case, it can be seen that the decay to the bulk density is more rapid on the vapour
side, as it was observed by Grohet al [5] in their MSA-based density functional theory. As
they argue [5], in gradient theory such a behaviour can only be observed ifξv < ξl , which
is not only at variance with their MSA-based prediction for the correlation length in the
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Figure 1. Density profiles for an ionic fluid within Debye–Ḧuckel theory atT ∗ = 0.05. The
profile is shown for various approximations to the local density: MODA (dotted), LADA (short-
dashed), DAPA (dash-dotted), BAPA (continuous), for the GDH (dash-dot-dotted), and for the
AHNC (long-dashed). Abbreviations are explained in the text.

Table 1. Results obtained using the listed local-density approximations, the GDH theory, and the
approximate HNC relation for the reduced surface tensionγ̃ and the correlation lengthξ in the
liquid and in the vapour phase atT ∗ = 0.05. The square of the prefactoraξ of the Lee–Fisher
result for the low-density limit correlation length, the coefficient of the square-gradient termc2g

at the critical point, and the Ginzburg temperature1T ∗Gi (taken from [2, 3, 6]) are also given.

Approximation γ̃ ξl ξv a2
ξ c2g 1T ∗Gi

MODA 0.0683 5.565 14.48 32 0.05818 0.006
LADA 0.0462 3.833 9.586 14 0.02619 0.068
DAPA 0.0381 3.429 7.259 8 0.01658 0.266
BAPA 0.0189 2.314 0.581 0 0.00271 60.80
GDH 0.0156 1.395 2.587 1 0.00267 63.67
AHNC 0.0127 0.971 2.574 1 0.00207 136.4

coexisting phases, but also with those of all other DH-based approaches we investigate; see
table 1. For BAPA, however, the correlation length in the vapour phase is indeed smaller
than in the liquid phase. This surprising result is due to the incorrect prediction for the
correlation length in the low-density limit, which in this case vanishes asρ1/4. This effect
is already at work for the low-density vapour phase and causes the small value ofξv. If
a1 is set to 31/48 instead of 2/3, the resultingc leads to the correct Lee–Fisher correlation
length in the low-density limit and givesξl = 2.481 andξv = 2.624 atT ∗ = 0.05. Note that
only the ‘equal-weight’ BAPA, not the BAPA approach in general, predictsa1 = 2/3 and
leads to qualitatively wrong behaviour in the low-density limit. In an earlier study based
on gradient theory and the generalized (G)MSA, Telo da Gamaet al [11], observed a slight
asymmetry associated with a more rapid decay on the liquid side.

The broadest interface also corresponds to the highest surface tension. This quantity
varies fromγ̃ = 0.0127 for AHNC toγ̃ = 0.0683 for MODA. Nevertheless, it can be stated
that interface thickness and surface tension do not depend too strongly on the local-density
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approximation, although differences are noticeable. Thus, the conclusion of Grohet al [5]
that their treatment gives the correct order of magnitude for the surface tension seems well
justified. Note in this context that the MSA and the DH theory do not necessarily behave
in exactly the same way towards the local-density approximation; however, it seems safe
to say that both theories lead to roughly the same values for the surface tension for one
particular type of local-density approximation: the agreement of the values of Grohet al
for the surface tension atT ∗/T ∗c = 0.8 from LADA–MSA1/MSA (γ̃ = 0.037/γ̃ = 0.060)
and our LADA–DH estimate of̃γ = 0.046 is surprisingly good in view of the differences
in absoluteT ∗ andρ∗l − ρ∗v , which result from using the MSA in place of DH theory.

A dilemma arises, however, when one focuses on the Ginzburg temperature:1T ∗Gi
varies over four orders of magnitude depending on which local-density approximation is
applied [2, 3]. Even the, at first sight, most reasonable approximations, LADA and DAPA,
estimate the Ginzburg temperature of the ionic fluid to be smaller than the value of1T ∗Gi ≈ 2
obtained for a square-well fluid with short-range forces (λ = 1.5) [3]. This is in marked
contrast to what has been found from GDH [6], from GMSA [12], from AHNC–DH, and
from a BAPA–DH theory [3]. At this point, it might be worthwhile to emphasize again
that for the AHNC, the GDH, and the GMSA treatment, no specific assumption on the
form of the local density is made as the direct correlation function is obtained from bulk
liquid-state theories. So it must be concluded that in the case of ionic fluids, at least for
some particularly sensitive properties like the Ginzburg temperature, the ‘reasonable’ local-
density approximations do not seem to suffice at all, but even for less sensitive quantities
like the surface tension the results may vary by a factor of 3–5. The MSA may not be as
sensitive towards the local-density approximation as the DH theory; this, however, remains
to be checked explicitly.

Noteworthy from a computational point of view is the good agreement between the
results of the convenient AHNC and the much more elaborate GDH theory. As expected
the ‘equal-weight’ BAPA approach gives similar values as AHNC and GDH for all quantities
except for those evaluated at very low densities.
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